Clustering Approach to Unveiling Relationships between Gene Regulatory Networks

نویسندگان

  • Hiba Hasan
  • Khalid Raza
چکیده

Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method. Keywords—Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Kernel-based Gene Regulatory Network Inference

We propose a kernel-based method for inferring regulatory networks from gene expression data that exploits several important factors previously neglected in the literature, including expression clustering, nonlinear regulator-gene relationships, variable time lags and gene competition. In particular, our approach infers regulatory relationships by encouraging genes with similar expression patte...

متن کامل

Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination.

Although microarray data have been successfully used for gene clustering and classification, the use of time series microarray data for constructing gene regulatory networks remains a particularly difficult task. The challenge lies in reliably inferring regulatory relationships from datasets that normally possess a large number of genes and a limited number of time points. In addition to the nu...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

ASIAN: a web server for inferring a regulatory network framework from gene expression profiles

The standard workflow in gene expression profile analysis to identify gene function is the clustering by various metrics and techniques, and the following analyses, such as sequence analyses of upstream regions. A further challenging analysis is the inference of a gene regulatory network, and some computational methods have been intensively developed to deduce the gene regulatory network. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013